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Abstract
Landau level quantization in graphene reflects the Dirac nature of its
quasiparticles and has been found to exhibit an unusual integer quantum Hall
effect. In particular, the lowest Landau level can be thought of as shared
equally by electrons and holes, and this leads to characteristic behaviour of
the magneto-optical conductivity as a function of frequency � for various
values of the chemical potential μ. Particular attention is paid to the optical
spectral weight under various absorption peaks and its redistribution as μ is
varied. We also provide results for magnetic field B as well as chemical
potential sweeps at selected fixed frequencies, which can be particularly useful
for possible measurements in graphene. Both diagonal and Hall conductivities
are considered.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent experimental studies [1, 2] of the dynamics of electrons and holes in graphene (a single
atomic layer of graphite [3]) have revealed unusual behaviour related to the Dirac nature of its
quasiparticles. Two dimensional graphene has a honeycomb lattice structure with two atoms
per unit cell. Its band structure consists of two inequivalent pairs of cones with apices at the
Brillouin zone corners. For zero chemical potential the lower energy cones are completely filled
and the upper empty. In a graphene device an applied gate voltage can be used to introduce
electrons in the upper band or, by voltage reversal, holes in the lower band (cones).

The quasiparticles in graphene obey the Dirac [4, 5] rather than the Schrödinger equation
and this has profound implications for their dynamics. The unconventional quantum Hall effect
was expected theoretically [6–10] and recently observed [1, 2] to have half integer (divided by
spin and valley degeneracy) rather than integer filling factors. The predicted phase shift of
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π in the de Haas–van Alphen [11, 12]3 and Shubnikov–de Haas [14] oscillations was also
seen experimentally [1, 2]. Another feature related to the Dirac-like character of the carriers
in graphene seen in the dc measurements is a finite effective cyclotron mass for the massless
Dirac quasiparticles, which varies as the square root of the number of carriers [11, 14, 1, 2].

In this paper we consider the magneto-optical conductivity of graphene. Work without
a magnetic field includes the calculations of Ando et al [15], who considered the effect on
the frequency dependent conductivity of short- and long-range scatterers in a self-consistent
Born approximation. More recent work [16] describes several anomalous properties of the
microwave conductivity of graphene with, as well as without, magnetic field. These properties
are directly related to the Dirac nature of the quasiparticles. Several analytic formulae for
the longitudinal as well as Hall ac conductivity are given in the paper [8]. They also present
extensive results for dc properties and preliminary data on the real part of σxx (�) versus �
in the optical region. Another extensive work by Peres et al [9] on the ac conductivity in
graphene treats localized impurities in a self-consistent fashion as well as extended edge and
grain boundaries including also effects of electron–electron interactions and self-doping.

In this paper we follow most closely [8], which we extend in several directions. An aim is
to provide simpler analytic formulae, which should prove useful in the analysis of experiment
and check on their accuracy. Another is to consider magnetic field as well as chemical potential
sweeps possible in graphene field effect transistor devices [1–3, 17]. Recent work by Li et al
in organic metals [18] has demonstrated that the ac measurements are also possible in such
devices. Consistent with our aim, we consider impurities only in the simplified scattering
rate model and neglect real part renormalizations, although these could easily be included
if wished. While the renormalization effects beyond those included in this simplified model
might become important for the interpretation of future experiments, we point out that so far
the free quasiparticle model with associated transport lifetime has been remarkably successful
in understanding the dc results of [1, 2].

In section 2 we relate the magneto-optical conductivity tensor to the Dirac fermionic
Green’s function through the Kubo formula. The general formulae obtained can be greatly
simplified and closed form expressions are obtained in two cases. In general the fermionic self-
energy can depend on energy and Landau level index as well as the temperature and value of the
external magnetic field B . Under the assumption that variations with Landau level index n can
be neglected, the sum over transitions between neighbouring Landau levels can be carried out
explicitly and a closed form expression is obtained for conductivity in terms of the digamma
function. A single integral over an internal frequency remains. The expression obtained is
suitable for calculations of the ac conductivity for any value of temperature, chemical potential
and magnetic field. Its microwave frequency limit has been used to describe properties of
graphene in [16]. In the case when energy dependence of the fermionic self-energy can be
neglected, the internal integration over energy can be done and what remains is the sum over the
Landau level index n of Lorentzian forms multiplied by thermal factors and algebraic weighting
factors. The weighting factors depend on the Landau level energies as well as the excitonic gap
(see e.g. [19–21]), should one wish to include this possibility. When we compare numerical
results obtained from the Lorentzian model and from the previous more general expressions
in the limit of constant scattering rate, we find good quantitative agreement between the two.
This provides support for the analysis of experimental data [22]. In section 2.3 we consider the
low field limit for the Lorentzian model derived in section 2.2 and establish its correspondence
with previously known results. In section 3.1 we present the numerical results for the real part

3 The fact that the phase shift of π in graphite is related to nonzero Berry’s phase was discussed by Mikitik and
Sharlai [13].
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of the diagonal conductivity as a function of photon energy � for fixed value of magnetic field
and various values of chemical potential. We also provide results for fixed photon energy while
sweeping either chemical potential or external magnetic field, which should prove useful in
comparing with experiments. The effect of opening of an excitonic gap on the absorption lines
is described. In section 3.2 a discussion of optical spectral weight redistribution by the magnetic
field is given. Section 3.3 is structured in parallel to section 3.1 but deals with the absorptive
part of the off-diagonal Hall magneto-optical conductivity. A discussion and conclusions are
given in section 4. Some of the algebra needed in this work is found in the appendix.

2. Analytic expressions for optical conductivity

The optical conductivity tensor is calculated using the Kubo formula

σi j (�) = �R
i j(�+ i0)

i�
, (1)

where �R
i j (�) is the retarded current–current correlation function, which in the bubble

approximation is given by

�i j(�+ i0) = e2v2
F

∫ ∞

−∞
dω dω′ nF(ω

′)− nF(ω)

ω − ω′ −�− i0

×
∫

d2k

(2π)2
tr
[
γ i A(ω,k)γ j A(ω′,k)

]
, i = 1, 2 (2)

where nF(ω) is the Fermi distribution function nF(ω) = 1/[exp((ω − μ)/T )+ 1]; tr not only
takes care of the 4×4 γ matrices [γ ν = σ3 ⊗ (σ3, iσ2,−iσ1)], but also includes the summation
over flavour (spin) index. Here

A(ω,k) = e− ck2

|eB|
∞∑

n=0

(−1)n	n(ω)

2πMn

[
(γ 0 Mn +
) f1(k)+ f2(k)
(ω − Mn)2 + 	2

n(ω)

+ (γ 0Mn −
) f1(k)− f2(k)
(ω + Mn)2 + 	2

n(ω)

]
(3)

is the spectral function (decomposed over Landau levels) associated with the translation
invariant part of the Dirac fermion Green’s function in an external magnetic field B applied
perpendicular to the plane along the positive z direction (see e.g. [21, 11]). In equation (3)

f1(k) = 2

[
P−Ln

(
2ck2

|eB|
)

− P+Ln−1

(
2ck2

|eB|
)]
, f2(k) = 4vFkγγγ L1

n−1

(
2ck2

|eB|
)

(4)

with P± = (1 ± iγ 1γ 2 sgn (eB))/2 being projectors and Lαn (z) the generalized Laguerre
polynomials. By definition, Ln(z) ≡ L0

n(z) and Lα−1(z) ≡ 0. The energies of the relativistic
Landau levels in equation (3) are

En = ±Mn, Mn =
√

2 + 2nv2

F|eB|/c, (5)

where the energy scale associated with the magnetic field expressed in the units of temperature
reads

eBv2
F

c
→ eBh̄v2

F

c

1

k2
B

= 8.85 × 10−8 K2 v2
F (m s−1) B (T), (6)

where vF is the Fermi velocity in graphene given in m s−1 and the field B is given in tesla. In the
following we set h̄ = kB = 1, and in some places e = c = 1, unless stated explicitly otherwise.
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For the numerical calculations we use the value vF ≈ 106 m s−1 [1, 2], which leads to the
relationship eB → (8.85 × 104 K2) B (T). We consider relatively low fields B � 17 T, where
spin splitting is unresolved [23], so that we can assume that the above mentioned summation
over flavour index simply gives Nf = 2 in all expressions below. The Landau level energies (5)
also include an excitonic gap 
. The physical meaning of this singlet excitonic gap is directly
related to the electron density imbalance between the A and B sublattices of the bi-particle
hexagonal lattice of graphene [19, 20] and there are strong indications [24] that it was indeed
observed in recent experiments [23, 25]. We will see here that optical measurements made on
graphene can be very useful in investigations of the excitonic gap.

Finally, the scattering rate 	n(ω) is expressed via the retarded fermion self-energy,
	n(ω) = −Im�R

n (ω), which in general depends on the energy, temperature, field and the
Landau level index n. This self-energy, which in general also has a real part, has to be
determined self-consistently from the Schwinger–Dyson equation. This equation can be solved
analytically [20] and numerically as was done in [6, 9]. In our paper we consider 	n(ω) as a
phenomenological parameter for two cases: (i) 	(ω) = 	n(ω) is independent of the Landau
level index n and (ii) 	n = 	n(ω) is independent of the energy ω. Under these assumptions the
optical conductivity can be studied analytically.

2.1. Frequency dependent scattering rate

Assuming that 	n(ω) is independent of the Landau level index, i.e. 	(ω) = 	n(ω), one can
calculate the sum over Landau levels and express the diagonal ac conductivity in the closed
form [8]

Re σxx (�) = e2 Nf

4π2�

∫ ∞

−∞
dω[nF(ω)− nF(ω

′)] Re

{
2B


2 − (ω̃ + i	)2
[1(−B)−2(−B)]

+ [1(−B)+1(+B)−2(−B)− 2(+B)]

× ψ

(

2 − (ω̃ + i	)2

2B

)
+ (ω̃ ↔ ω̃′, 	 ↔ 	′)

}
. (7)

Here ψ is the digamma function, we denoted B ≡ v2
F|eB|/c, and also included the

renormalization of energy caused by the real part of self-energy ω̃(ω) = ω − Re �(ω̃),
ω̃′ = ω̃(ω +�), 	 = 	(ω̃), 	′ = 	(ω̃′) and introduced the following short-hand notations:

1(±B) ≡ 1(ω̃, ω̃
′, 	, 	′,±B) = (ω̃′ + i	′)(ω̃ + i	)−
2

[ω̃ − ω̃′ + i(	 − 	′)][ω̃ + ω̃′ + i(	 + 	′)] ± 2B
,

2(±B) ≡ 2(ω̃, ω̃
′, 	, 	′,±B) = (ω̃′ − i	′)(ω̃ + i	)−
2

[ω̃ − ω̃′ + i(	 + 	′)][ω̃ + ω̃′ + i(	 − 	′)] ± 2B
. (8)

The advantage of equation (7) is that the ψ function contains the contribution to conductivity
from all transitions between neighbouring Landau levels. An infinite number of these
transitions need to be taken into account when the limit B → 0 is considered, so that the
zero field limit is easily treatable [8] on the base of equation (7). Another important feature
of equation (7) is that we kept the frequency dependent impurity scattering rate 	(ω), which
allows us to investigate its influence on the shape of the Drude peak [16].

Although in our work we will mostly use equation (7) for the numerical computations of
the diagonal conductivity, there is a possibility to derive simple approximate expressions for
the diagonal and Hall conductivities which turn out to be very useful when one is interested in
the resonance peaks of these conductivities in the infrared region.
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2.2. Landau level index dependent scattering rate and magneto-optical Lorentzian model

For analysing experimental data it is useful to have a magneto-optical Lorentzian model for
the complex conductivity, σ±(�) = σxx (�)± iσxy(�) due to inter-and intraband Landau level
transitions [26]. For the case of Dirac fermions it is considered in the appendix, whereof we
obtain the complex diagonal conductivity

σxx (�) = −e2v2
F|eB|

2πci

×
∞∑

n=0

{(
1 − 
2

Mn Mn+1

)
([nF(Mn)− nF(Mn+1)] + [nF(−Mn+1)− nF(−Mn)])

×
(

1

Mn − Mn+1 +�+ i(	n + 	n+1)
− 1

Mn − Mn+1 −�− i(	n + 	n+1)

)

× 1

Mn+1 − Mn
+
(

1 + 
2

Mn Mn+1

)
([nF(−Mn)− nF(Mn+1)]

+ [nF(−Mn+1)− nF(Mn)]) 1

Mn+1 + Mn

×
(

1

Mn + Mn+1 +�+ i(	n + 	n+1)
− 1

Mn + Mn+1−�− i(	n + 	n+1)

)}
,

(9)

and the complex Hall conductivity

σxy(�) = e2v2
FeB

2πc

∞∑
n=0

([nF(Mn)− nF(Mn+1)] − [nF(−Mn+1)− nF(−Mn)])

×
{(

1 − 
2

Mn Mn+1

)
1

Mn+1 − Mn

×
(

1

Mn − Mn+1 +�+ i(	n + 	n+1)
+ 1

Mn − Mn+1 −�− i(	n + 	n+1)

)

−
(

1 + 
2

Mn Mn+1

)
1

Mn+1 + Mn

×
(

1

Mn + Mn+1 +�+ i(	n + 	n+1)
+ 1

Mn + Mn+1−�− i(	n + 	n+1)

)}
.

(10)

In deriving equations (9), (10) we assumed that the impurity scattering rate is independent of
the energy ω, but kept its dependence on the Landau level index n. This assumption allows us
to eliminate the integration over ω which is present in equation (7). To preserve the Landau
index dependence, the sum over transitions between neighbouring Landau levels is retained in
equations (9) and (10).

Based on equations (9) and (10) one can easily write down separate expressions for
Re σxx (�), Im σxx (�), Re σxy(�) and Im σxy(�) and verify that diagonal and off-diagonal
conductivities satisfy Kramers–Kronig relations. A big advantage of equations (9) and (10) is
that they are more suitable for numerical computations and it is sufficient to include only a few
terms in the sum even in relatively low magnetic field. Also they are useful for the description
of the resonance peaks when the Landau level index dependence is more important than the
energy dependence of the scattering rate which is included in equation (7).

5
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All figures in this paper were computed for 	 = const, so for calculation of the
diagonal conductivity we used equation (7) and checked that it gives almost identical results to
equation (9). Since the corresponding full expression for the optical Hall conductivity derived
in [8] is rather difficult for numerical calculations, in the present paper we compute all results
for the Hall conductivity using equation (10). In the case of Landau level index independent
width, 	n = const, equations (9) and (10) acquire an even simpler form,

σxx (�) = e2v2
F|eB|(�+ 2i	)

πc i

×
∞∑

n=0

{(
1 − 
2

Mn Mn+1

) [nF(Mn)− nF(Mn+1)] + [nF(−Mn+1)− nF(−Mn)]
(Mn+1 − Mn)2 − (�+ 2i	)2

× 1

Mn+1 − Mn
+
(

1 + 
2

Mn Mn+1

)

× [nF(−Mn)− nF(Mn+1)] + [nF(−Mn+1)− nF(Mn)]
(Mn+1 + Mn)2 − (�+ 2i	)2

1

Mn+1 + Mn

}
(11)

and

σxy(�) = −e2v2
FeB

πc

∞∑
n=0

([nF(Mn)− nF(Mn+1)] − [nF(−Mn+1)− nF(−Mn)])

×
{(

1 − 
2

Mn Mn+1

)
1

(Mn+1 − Mn)2 − (�+ 2i	)2

+
(

1 + 
2

Mn Mn+1

)
1

(Mn+1 + Mn)2 − (�+ 2i	)2

}
. (12)

One can see that the conductivity σxx (�,μ) is an even function of μ while σxy(�,μ) is an odd
one.

2.3. Low field limit of the magneto-optical Lorentzian model

Now we check that equations (11), (12) reproduce correctly the limit B → 0. Introducing the
continuum variable ω instead of Mn given by equation (5) and replacing the sum over n by the
integral, we obtain

σxx (�) = −2ie2(�+ 2i	)

h

[
1

(�+ 2i	)2

∫ ∞




dω
ω2 −
2

ω

(
∂nF(ω)

∂ω
− ∂nF(−ω)

∂ω

)

−
∫ ∞




dω
ω2 +
2

ω2

nF(−ω)− nF(ω)

(�+ 2i	)2 − 4ω2

]
(13)

and

σxy(�) = e2v2
FeB

πc

∫ ∞




dω

(
∂nF(ω)

∂ω
+ ∂nF(−ω)

∂ω

)

×
[
−ω

2 −
2

ω2

1

(�+ 2i	)2
+ ω2 +
2

ω2

1

4ω2 − (�+ 2i	)2

]
, (14)

where we restored Planck constant h = 2π h̄ in the overall prefactor. Here the terms with
the factor (ω2 − 
2)/ω2 are intraband and the terms containing the factor (ω2 + 
2)/ω2 are

6
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interband. The expressions (13) and (14) are obtained under the condition
√

h̄|eB|v2
F/c 	 	.

The intraband term of equation (13) can be written in the familiar Drude form

σDrude
xx (�) = 2e2

h

∫ ∞

−∞
dω

(
−∂nF(ω)

∂ω

)
1

2	 − i�

(ω2 −
2)θ(ω2 −
2)

|ω| (15)

which for 
 = 0 reduces to equation (2) of [16]. The whole expression (13), which includes
the interband term, also reduces to the other limiting cases considered in [16, 27]. In particular,
an unusual feature of graphene is that in the high frequency limit the interband contribution is
a constant,

σxx (�) 
 πe2

2h
, � � μ,
, T . (16)

Here to rely on the linearized Dirac approximation we assumed that� is still well below a large
band edge.

The real part of the Hall conductivity (14) for � = 
 = T = 0 reduces to the expression

σxy(� = 0) = −e2v2
FeB sgnμ

4πc	2
,

√
h̄|eB|v2

F/c 	 	 	 |μ| (17)

which is in agreement with equation (4.3) of [8]. On the other hand, in the high frequency limit
equation (14) gives

σxy(�) = e2v2
FeB

πc(h̄�)2

[
tanh

μ+


2T
+ tanh

μ−


2T

]
, � → ∞. (18)

This behaviour also follows from equation (10), which is valid in an arbitrary field B .
Interestingly, expression (18) is sensitive to the relationship between |μ| and 
 and this
feature can be used for the gap detection (see the discussion of figures 4 and 9 below). Using
equations (16) and (18) we obtain the weak field optical Hall resistivity

ρxy(�) = − σxy(�)

σ 2
xx (�)+ σ 2

xy(�)

= − 16v2
F B

πec�2

[
tanh

μ+


2T
+ tanh

μ−


2T

]
, � � μ,
, T . (19)

Accordingly, the high frequency optical Hall coefficient for 
 = 0 and T → 0

RH (�) = ρxy(�)

B
= − 32v2

F

πec�2
sgn (μ) (20)

contains the information on the value of the Fermi velocity in graphene.
Finally, the imaginary part of σxy(�) which follows from equation (14) is given by the

expression

Im σxy(�) = 4e2v2
FeB	�

πc

∫ ∞




dω

(
∂nF(ω)

∂ω
+ ∂nF(−ω)

∂ω

)

×
[

1

(�2 − 4	2)2 + 16�2	2
+ 1

(4y2 −�2 + 4	2)2 + 16�2	2

]
(21)

which in the high frequency limit becomes

Im σxy(�) 
 −4e2v2
FeB	

πc(h̄�)3

(
tanh

μ+


2T
+ tanh

μ−


2T

)
, � → ∞. (22)

The last equation shows that in this limit the real part of σxy given by equation (18) is the
leading term.

7
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Figure 1. The real part of the longitudinal conductivity, Re σxx (�), in units of e2/h versus
frequency � in cm−1 for temperature T = 10 K and scattering rate 	 = 15 K. Long dashed,
the chemical potential μ = 50 K and the magnetic field B = 10−4 T; dash–dotted, μ = 50 K and
B = 1 T; solid, μ = 510 K and B = 1 T; short dashed, μ = 660 K and B = 1 T.

3. Results for optical conductivity

3.1. Diagonal conductivity

In figure 1 we show the results based on a numerical evaluation of the full equation (7) for the
real part of the longitudinal conductivity Re σxx (�) in units e2/h as a function of frequency
in units of cm−1. Except for the long dashed (red) curve which was obtained in the limit of
vanishing external magnetic field (namely B = 10−4 T) and is included for comparison, the
other three curves are for B = 1 T. They differ in value of the chemical potential μ. In all
cases the temperature T = 10 K, the impurity scattering 	 = 15 K and the excitonic gap

 = 0. For reference in scrutinizing the curves, the frequency of the n = 1 Landau level,
�1 = M1(
 = 0) = 294 cm−1(423 K), �2 = M2(
 = 0) = 415.8 cm−1(598 K) and
�3 = M3(
 = 0) = 509.2 cm−1(733 K), so that for the dash–dotted (black) curve μ falls
below the energy of the n = 1 level (see the left side of figure 2(c))4, for the solid (blue) curve it
falls between n = 1 and 2 levels (see the middle of figure 2(c)) and for the short dashed (green)
curve it is between n = 2 and 3 (right side of figure 2(c)). The energies of the peaks are M1,
M1 + M2, M2 + M3 etc and M2 − M1, M3 − M2 etc. Note that the position and the intensity
of the last two peaks in figure 1 (largest frequency �) remain the same for all chosen values of
the chemical potential μ. When μ falls between M2 and M3 (short dashed (green) curve) the
intensity in the third last peak has dropped to half the value it has in the solid (blue) curve, while
the fourth last peak has merged into a low intensity background, as has the fifth last, which is
seen only in the dash–dotted curve. Also a new peak has appeared at M3 − M2 which was

4 We recall that the conversion rule from the frequency in cm−1 to the energy in kelvin is � (K) =
1.4387 K cm � (cm−1).
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Figure 2. (a) Schematic representation of the two pairs of Dirac cones with apex at points K (left)
and K′ (right) in the graphene Brillouin zone. The energies of the Landau levels are shown for
index n = 0, . . . 4 as solid (red) circles for both positive and negative Dirac cones. The transition
from n = 0 to 1 across the chemical potential shown as a thick horizontal (violet) line is for the
case 
 = 0. (b) The same as (a) but now there is a finite excitonic gap 
. (c) The pair of cones
at points K and K′ in the Brillouin zone (see panels (a) and (b)) is combined. Vertical arrows show
allowed optical transitions between Landau levels for three values of the chemical potential. On the
left are the transitions when μ is between n = 0 and 1, in the middle between n = 1 and 2 and on
the right between n = 2 and 3. The first line on the left is different in that it is both inter (between
two separate cones) and intra (within a given cone). The first line in all other series in intra and
the shortest inter appears only once, while all others appear twice. Note that from equation (11)
σxx (�,μ) is even in μ, while from equation (12) σxy(�,μ) is odd in μ.

not present in the dash–dotted curve. Similarly for μ between M1 and M2 (solid (blue) curve)
the intensity of the fourth highest energy peak has dropped to half the intensity it has in the

9
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dash–dotted curve and the peak at M1 is entirely missing, having merged into the low intensity
background. A new peak has appeared at M2 − M1. Finally, when μ is below M1 (dash–dotted
curve) there is no peak below M1 and the line at M1 always has full intensity. Whatever the
value of μ, this line will never be seen to half its intensity and this is the hallmark of the Dirac
nature of the quasiparticles. A schematic diagram which helps us understand the behaviour
of the absorption lines that we have just described is given in figure 2(c). On the left of the
figure we show the energies of the Landau levels En = ±Mn of equation (5) as solid (red) dots
along with their quantum numbers n = 0, 1, 2, . . .. The Dirac cones, which come in pairs, with
positive and negative energies, and exist at K and K′ points in the graphene Brillouin zone,
are also shown. The three values of chemical potential considered in figure 2(c) are shown in
heavy solid (violet) horizontal lines. The possible optical transitions in each case are indicated
as vertical arrows and connect levels n to n ± 1 only. Moving from left to right we see first a
single transition from E0 to E1 = M1, then a pair of interband transitions from E1 = −M1 to
E2 = M2 and E2 = −M2 to E1 = M1 followed by another pair from E2 = −M2 to E3 = M3

and E3 = −M3 to E2 = M2 etc. For the middle set of lines the first is an intraband transition
from E1 = M1 to E2 = M2 followed by a single interband transition from E1 = −M1 to
E2 = M2 and then a pair from E2 = −M2 and E3 = M3 and E3 = −M3 to E2 = M2 etc.
Finally, in the set of transitions on the right of the figure there is an intraband transition from
E2 = M2 to E3 = M3 followed by a single interband transition from E2 = −M2 to E3 = M3

and a pair from E3 = −M3 to E4 = M4 and E4 = −M4 to E3 = M3 etc. This is precisely
the pattern we have seen in figure 1. We note one more aspect of the anomalous line on the
far left of the figure for the transition from the n = 0 to n = 1 Landau level. It is the only
line which cannot be unambiguously assigned to inter or intraband transition because the state
at n = 0 falls at the apex of the Dirac cones, where positive and negative energy cones meet,
and hence they share this state equally. This is further illustrated in figures 2(a) and (b), where
two sets of cones at K and K′ are shown separately for the case of 
 = 0 in frame (a) and
finite excitonic gap in frame (b). In this second case we see clearly that points K and K′ react
differently under a finite magnetic field. For the cone on the left the n = 0 level has moved
to energy E0 = −
 and for the cone on the right it has moved to E0 = 
. Note that for
the value of chemical potential shown as a solid horizontal (violet) line the E0 = −
 to E1

transition (vertical arrow) on the left is now definitely interband and the E0 = 
 to E1 on the
right is intraband. The ambiguity in designation of the n = 0 level present in the top frame (a)
of figure 2 is lifted when the gap becomes finite.

The rather complicated pattern of behaviour just described can be understood simply from
the mathematics of the previous section in the limit 	 → 0 and T → 0. Taking 
 = 0, μ � 0
and � � 0, one obtains from equation (A.12)

Re σxx (�) = e2

h
M2

1

π

2

∞∑
n=0

{
[2 − nF(Mn)− nF(Mn+1)]δ(Mn + Mn+1 −�)

Mn + Mn+1

+ [nF(Mn)− nF(Mn+1)]δ(Mn − Mn+1 +�)

Mn+1 − Mn

}
. (23)

For μ ∈ ]MN ,MN+1[ the T = 0 thermal factor

2 − nF(Mn)− nF(Mn+1) =

⎧⎪⎨
⎪⎩

0 for n < N ,

1 for n = N ,

2 for n > N ,

(24)

10



J. Phys.: Condens. Matter 19 (2007) 026222 V P Gusynin et al

while

nF(Mn)− nF(Mn+1) =
{

1 for n = N ,

0 for n = N .
(25)

The line in Re σxx (�) with the frequency Mn + Mn+1 occurs only for n � N with the others
missing. Further, the line with n = N has half of the weight it would have if it occurred in
another case, namely, 1/(Mn + Mn+1), while lines for n > N have full weight 2/(Mn + Mn+1).
Note that the lines with the frequency equal to the difference in Landau level energies have
weight 1/(Mn+1 − Mn). These lines are always present except for the case when μ falls
below M1, when the single line at M1 has weight 2/M1. In summary, we have seen in the
above discussion that as μ moves through higher and higher values of MN the lines below N
disappear into the background, with a new line appearing at MN+1 − MN . Further, the line at
n = N loses half its intensity while the others remain unaltered, except for the special case
when chemical potential falls below the Landau level M1.

The pattern would be quite different if instead of Mn ∼ √
n the Landau level quantization

were Schrödinger-like Mn = ωc(n + 1/2), with ωc being the cyclotron frequency. In this case
the position of the line corresponding to the difference in Landau level energies (intraband)
never shifts in energy. Further, the lines corresponding to the sum of the Landau level energies
(interband) fall at regular energy intervals 2ωc(n +1), namely 2ωc, 4ωc, 6ωc, . . .. Furthermore,
as μ increases through the energies of the various Landau levels all lines halve their intensity
before fading into the background and for μ below the first level there is no line at ωc. There is
also no ambiguity about whether a line is intra or interband as no level is shared between upper
and lower cone.

In field effect devices the chemical potential in a graphene sheet can be changed by
applying a gate voltage and this may be an ideal way to observe the effects just described.
However, there is an alternative way to see the same effects. For any fixed value of chemical
potential, the external magnetic field can be selected in such a way that μ falls below the first
Landau level or in between n = 1 and 2 etc. For appropriate choices of B [28] the curves for
Re σxx (�) can be made to behave exactly as in figure 1. To see this, it is important that � be

divided by
√

h̄eBv2
F/c, so that the lines remain fixed in normalized frequency and the vertical

scale be divided by the same factor and multiplied by 	 to keep the dimensions the same. When
this is done, the same pattern as seen in figure 1 emerges for this configuration corresponding
to fixed μ with several well chosen values of B .

We have found that the curves of figure 1 change very little as the chemical potential is
varied within the limited range MN to MN+1. We have also verified that for the parameters
used here, T = 10 K, 	 = 15 K, the crossover from half intensity in the line MN + MN+1 to
near zero, i.e. merging into the background, occurs rather abruptly in an energy range set by
T and/or 	. This is illustrated in figure 3, where we consider how the complete disappearance
of the peak at � = �1 = 294 cm−1 (420 K) and the depletion of the next higher peak at
710 cm−1 towards half its initial value proceeds as the chemical potential μ crosses through
the energy of the n = 1 Landau level (�1 = M1(
 = 0)). The long dashed curve (red) is
for μ = 100 K chosen to be well away from the crossover point of 420 K and is shown for
comparison. The dash–dotted curve (black) is for μ = 410 K slightly below the crossover
point, the solid curve (blue) is for μ = 420 K just at the crossover energy and the short dashed
curve (green) is for μ = 430 K, which spans ±10 K on either side of �1, which is much less
than the level width of 2	 = 30 K. As μ increases through 410 K we note the growth of the
peak at � = 122 cm−1, the depletion towards zero value of the peak at 294 cm−1 and that
towards half its initial value of the next higher peak at 710 cm−1. The complete transfer of
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Figure 3. Real part of the longitudinal conductivity, Re σxx (�) in units of e2/h versus frequency
� in cm−1 for temperature T = 10 K, scattering rate 	 = 15 K and magnetic field B = 1 T
for four values of chemical potential. Long dashed, μ = 100 K; dash–dotted, μ = 410 K; solid,
μ = 420 K; short dashed, μ = 430 K.

spectral weight between the various peaks is completed for a rather small region of chemical
potential variation about�1 = 294 cm−1 (420 K) of order 30 K (not shown in the figure). After
the crossover is complete, the pattern of the spectral weight distribution will remain unchanged
until the chemical potential becomes close to the energy of the next Landau level. We would
like to stress that although figure 3 is plotted using the full expression (7) we have verified that
the results obtained using equations (A.12) and (9) are practically identical.

Returning to equations (23)–(25) we note that the optical spectral weight under a given
inter- or intraband line varies as the square root of B (see equation (32) and the discussion
associated with it). This has been verified in the recent experiment of Sadowski et al [29] on
ultrathin epitaxial graphite samples [30, 31].

The effect of an excitonic gap 
 on the optical spectral weight distribution in a 1 T
magnetic field is illustrated in figure 4. Here as in the previous figures 	 = 15 K and
T = 10 K. The chemical potential is set at 150 K in all cases. The long dashed (red), dash–
dotted (black), solid (blue) and short dashed (green) curves are for 
 = 0, 100, 150 and 200 K
respectively. The curve for 
 = 0 is for reference. We note that for finite 
 = 100 K the
line at �1 = M1(
 = 0) = 294 cm−1 splits into two peaks (dash–dotted (black) curve).

The lower peak is at energy M1(
) − M0(
) =
√
�2

1 +
2 − 
, while the upper peak is at

M1(
)+ M0(
) =
√
�2

1 +
2 +
. These two transitions for this value of chemical potential
are illustrated in figure 2, middle frame (b) (see the arrows). Additional transitions not shown
in this frame can, of course, occur, but these will have higher energy. For 
 = 150 K = μ

the n = 0 state shown on the right-hand cone of figure 2(b) is occupied with a probability
1/2 at T = 0, 	 = 0, and a transition from the n = 1 lower cone to the n = 0 upper cone

12
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Figure 4. Real part of the longitudinal conductivity, Re σxx (�), in units of e2/h versus frequency
� in cm−1 for temperature T = 10 K, 	 = 15 K, B = 1 T and chemical potential μ = 150 K
for four values of the excitonic gap 
. Long dashed, 
 = 0 K; dash–dotted, 
 = 100 K; solid,

 = 150 K; short dashed,
 = 200 K.

is possible, as it is from the n = 0 upper cone to n = 1 of the same cone and each must be

weighted by a factor 1/2. The first has energy
√
�2

1 +
2 + 
, while the second has energy√
�2

1 +
2 − 
. There is an additional transition coming from the second cone on the left-

hand side of the figure of energy
√
�2

1 +
2 + 
. Thus the spectral intensity of the lower
energy line in the solid curve (blue) is lower than that of the higher energy line by a factor of
3. Finally, for 
 = 200 K (
 > μ) the energies of the lowest transition possible in both left

and right side cones are the same, equal to
√
�2

1 +
2 +
, and so there is only one line in the
dashed (green) curve. This pattern of behaviour should allow one to measure the occurrence of
an excitonic gap catalysed by the magnetic field. We note that the split peak in figure 4 with
finite
 acquires a slight asymmetry because of the factor 1±
2/Mn Mn+1 of equation (A.12),
which is different for inter- and intraband transitions.

So far we have shown the results for fixed values of chemical potential and magnetic
field as a function of photon energy. It is also of interest to fix the photon frequency and
sweep either chemical potential (μ) or field (B) [32]. We begin with the first of these two
possibilities and this is illustrated in figure 5. Four well chosen frequencies are selected, namely
� = �2 −�1 = 122 cm−1, long dashed curve (red); � = �1 = 294 cm−1, dash–dotted curve
(black); � = �2 +�1 = 710 cm−1, solid curve (blue), and � = 0.95�1 = 280 cm−1, short
dashed curve (green). Taking these in order, we note that the long dashed curve (red) is near
zero untilμ reaches the value of 420 K, at which point it increases rapidly, reaching a plateau at
Re σxx (�) ≈ 17.5e2/h (the height being set by the height of the peak in the solid (blue) curve
in figure 1), after which it drops rapidly as μ goes through 595 K. It does not drop down all the
way to zero, however, as it continues to sample parts of the peaks at the difference in frequencies
Mn+1 − Mn until these move below the sampling optical frequency set at 122 cm−1. The next
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Figure 5. Real part of the longitudinal conductivity, Re σxx (�) in units of e2/h versus the chemical
potential μ in K for T = 10 K, 	 = 15 K, B = 1 T and
 = 0. Four frequencies� are considered,
long dashed � = 122 cm−1, dash–dotted � = 294 cm−1, solid � = 710 cm−1, short dashed
� = 0.95�1 = 280 cm−1. The first three frequencies correspond to � = �2 − �1, �1 and
�2 +�1, respectively, for the parameters used.

optical frequency chosen at � = �1, short–long dashed (black) curve, begins by sampling the
equivalent curve in figure 1, where the peak has height ∼14e2/h. However, when μ crosses the
energy of the first Landau level at 420 K this peak disappears and the curve drops to zero. No
other level crosses this frequency again. The short dashed curve is for � = 0.95�1. It shows
very much the same behaviour as the previous case, but its plateau height is a little smaller
because the peak (dash–dotted curve of figure 1) is sampled not at its centre, but rather slightly
below its maximum value. The final solid (blue) curve is for � = �2 +�1. In this case a first
plateau is seen at small μ with height ∼5.5e2/h, which is the height of the second peak in the
dash–dotted (black) curve of figure 1. It drops to half of this value as� crosses 420 K and then
near zero as � crosses 595 K. All features of these curves can be traced to the corresponding
behaviour of the curves of figure 1. An additional feature of these curves is now described.
Note that as the chemical potential gets small the black (dash–dotted) curve increases slightly,
while the green (dotted) curve drops. As we have described in connection with figure 3 the
line shapes do depend on the value of μ if it falls within order 	 and/or T of a Landau level
energy Mn . For μ near zero, the first peak height in the black (dash–dotted) curve of figure 1
increases by ∼5% and its width is also slightly narrowed. This leads to a slight increase in peak
height at � = �1 = 294 cm−1 monitored in the black (dash–dotted) curve of figure 5 and a
reduction in the green (dotted) curve, which monitors the height of the curve slightly off the
peak at � = 0.95�1 = 280 cm−1.
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Figure 6. Real part of the longitudinal conductivity, Re σxx (�) at three frequencies (long dashed,
200 cm−1; dash–dotted, 400 cm−1; solid, 800 cm−1) as a function of the inverse of the square root
of the magnetic field, 1/

√
B, with B in T. The other parameters are T = 10 K, 	 = 15 K and

μ = 50 K.

Another set of useful curves when considering possible experimental configurations is to
fix the frequency of the light as well as the chemical potential and sweep the magnetic field.
Results are shown in figure 6 for three cases, � = 200 cm−1, long dashed (red) curve, the
dash–dotted (black) curve for � = 400 cm−1 and solid (blue) for � = 800 cm−1. In all
cases T = 10 K, 	 = 15 K, μ = 50 K and the excitonic gap 
 is taken to be zero. On the
horizontal axis we plotted 1/

√
B (T), the inverse square root of the magnetic field in tesla, so

that fields below 1 T fall above one on this scale. The pattern of oscillations is perhaps more
complex than in previous curves, but can easily be traced out from a knowledge of such curves
for Re σxx (�) at different values of B . As an example consider the case � = 200 cm−1.
The value of Re σxx (�)h/e2 at 1/

√
B (T) = 1 is just that of the dash–dotted (black) curve

of figure 1 read at � = 200 cm−1. As B is decreased from its value 1 T, the first peak in the
dash–dotted curve in figure 1 will move to lower frequency and so increases significantly the
value of longitudinal conductivity at � = 200 cm−1. Its peak will cross this reference energy
for 1/

√
B (T) 
 1.47 and this produces the first peak in the long dashed (red) curve of figure 6.

As B is decreased further, below 1 T, the second peak in the dash–dotted curve of figure 1 will
also move through � = 200 cm−1. This occurs for 1/

√
B (T) 
 3.5, where a second lower

intensity peak is seen in the long dashed (red) curve of figure 6. The other curves of figure 6 can
be traced out from similar considerations based on figure 1 with attention paid to the evolution
of these curves with changing value of B .

3.2. Spectral weight

An interesting quantity to consider is the optical spectral weight that falls between � = 0 and
� = �m with �m a variable upper limit in the integral

W (�m) =
∫ �m

0
d� Re σxx (�). (26)
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For the case T = 	 = 
 = B = 0 we have [16]

σxx (�) = πe2 Nf

h
|μ|δ(�)+ πe2 Nf

4h
θ

( |�|
2

− |μ|
)
. (27)

With Nf = 2 this leads to

W (�m) = e2

h
(π |μ| + θ(�m/2 − |μ|)π(�m/2 − |μ|)) 
 e2

h

π�m

2
for �m � |μ|.

(28)

For finite B , assuming for simplicity M0 < μ < M1 we get from equation (23)

σxx (�) = e2 Nfv
2
F|eB|

2c

∞∑
n=0

δ(Mn + Mn+1 −�)

Mn + Mn+1
. (29)

Accordingly for 
 = 0

W (�m) = e2 Nfv
2
F|eB|

2c

∞∑
n=0

θ(�m − Mn − Mn+1)

Mn + Mn+1

= πe2

h

√
2h̄|eB|v2

F/c
N∑

n=0

1√
n + √

n + 1
. (30)

For large values �m the maximum N that contributes to (30) can be estimated from �m =
MN + MN+1 
 2MN and so N = �2

m

8h̄|eB|v2
F/c

. But

N∑
n=0

1√
n + √

n + 1
= √

N + 1 ≈ √
N for N � 1, (31)

and so

W (�m) 
 e2

h

π�m

2
(32)

which agrees with equation (28) as we would expect. We note that, as we have stated, the
area under each line goes as

√
B, but the sum over the lines up to �m gives another factor

∼1/
√

B, which means that W (�m) is independent of B . In figure 7 we show numerical results
for (h/e2)W (�m) in units of cm−1 as a function of �m in cm−1. The long dashed (red) curve
is computed on the basis of the first equality in equation (28) for μ = 50 K, T = 0 K, and
B = 0 T, and is given for comparison with the two other curves. These curves are obtained by
numerical integration of equation (26) with Re σxx (�) given by equation (A.12) for the case
T = 0.5 K, 	 = 4 K, 
 = 0 and finite B = 0.2 T. The dash–dotted (black) curve is for
chemical potential μ = 50 K, while solid (blue) is for μ = 250 K. For the first case μ is
below M1 at 131.5 cm−1 and for the second it is above. At small values of �m both curves
start at zero and remain small until�m goes through the first Landau peak in figure 1, at which
point it rises sharply and subsequently exhibits a plateau before showing a next sharp rise. For
the dash–dotted curve (black) the first rise is at 131.5 cm−1 (interband line), but for the solid
(blue) curve it is at the intraband line (54.6 cm−1). As �m increases to include several peaks
in σxx (�) the curves start to follow more closely the B = 0 T result (long dashed (red) curve).
This behaviour can be understood better from a consideration of equation (30). The magnetic
field mainly readjusts the available optical spectral weight among the Landau levels below�m.

To be specific, we have considered explicitly in this section only the case M0 < μ < M1.
For μ ∈ ]MN ,MN+1[ we can show that the missing spectral weight in the lines n � N is
all to be found in the single intraband line at MN+1 − MN . From equation (23) and noting
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Figure 7. Variation of the optical sum W (�m) (multiplied by h/e2) in cm−1 as a function of �m

in cm−1 for three different cases. Long dashed, μ = 50 K, B = 0 T and T = 	 = 0 K (see
equation (28)); dash–dotted, μ = 50 K, B = 0.2 T, T = 0.5 K and 	 = 4 K; solid, μ = 250 K,
B = 0.2 T, T = 0.5 K and 	 = 4 K.

equations (24) and (25) as T → 0, the optical spectral weight lost in units of (e2/h)M1(π/2)
is

N−1∑
n=0

2√
n + 1 + √

n
+ 1√

N + 1 + √
N

≡ 1√
N + 1 − √

N
. (33)

The first term in the left-hand side is the spectral weight from all the lines that have completely
disappeared from n = 0 to N − 1. The second term is from the reduction in intensity by a
factor of 1/2 of the line at n = N . The quantity in the right-hand side is the optical weight of
the intraband line which has picked up all of the lost intensity.

3.3. Hall conductivity

Next we consider the absorptive part of the transverse Hall conductivity. The calculations
are based on equation (10). In figure 8 we show results for Im σxy(�) in units of e2/h as a
function of � in cm−1. In all cases considered, temperature T = 10 K, impurity scattering rate
	 = 15 K and excitonic gap 
 = 0. The magnetic field B = 1 T and three values of chemical
potential are considered. The long dashed (red) curve is for μ = 50 K below the energy of the
n = 1 Landau level, dash–dotted (black) μ = 510 K between n = 1 and 2 and μ = 660 K
between n = 2 and 3 as in figure 1. We note a single peak in the long dashed (red) curve at
M1, in contrast to two in the other two curves. For the dash–dotted (black) curve the peaks are
at M2 − M1 and M1 + M2, respectively, and for the solid (blue) curve they are at M3 − M2

and M2 + M3. These features can be easily understood from equation (10) for σxy(�) when
we take its imaginary part in the limit
 = 0, 	 → 0 which is for � > 0, μ > 0

Im σxy(�) = −e2

h
M2

1

π

2

∞∑
n=0

[nF(Mn)− nF(Mn+1)− nF(−Mn+1)+ nF(−Mn)] (34)

×
[
δ(�− Mn+1 + Mn)

Mn+1 − Mn
+ δ(�− Mn+1 − Mn)

Mn+1 + Mn

]
. (35)
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Figure 8. The imaginary part of the Hall conductivity, Imσxy (�) in units of e2/h as a function of
frequency � in cm−1. The three cases are for μ = 50 K (long dashed), μ = 510 K (dash–dotted)
and μ = 660 K (solid). The other parameters are B = 1 T, T = 10 K and 	 = 15 K.

Figure 9. The imaginary part of the Hall conductivity Im σxy (�) in units of e2/h versus frequency
� in cm−1 for temperature T = 10 K, 	 = 15 K, B = 1 T and chemical potential μ = 150 K
for four values of the excitonic gap 
. Long dashed, 
 = 0 K; dash–dotted, 
 = 100 K; solid,

 = 250 K; short dashed,
 = 200 K.

Taking the limit of zero temperature, T = 0, in equation (34), only the first two thermal factors
in the square bracket survive. For μ ∈ ]M0,M1[ we get

Im σxy(�) = −e2

h
M2

1π
δ(�− M1)

M1
, (36)
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while for μ ∈ ]MN ,MN+1[ with N > 0 we get

Im σxy(�) = −e2

h
M2

1

π

2

[
δ(�− MN+1 − MN )

MN+1 + MN
+ δ(�− MN+1 + MN )

MN+1 − MN

]
. (37)

Thus for μ ∈ ]M0,M1[ the transverse Hall conductivity exhibits a single peak at � = M1 with
weight 2/M1, in units of (e2/h)(π/2)M2

1 , and for μ ∈ ]MN ,MN+1[ with N > 0 it has two
peaks at MN+1 + MN and MN+1 − MN with weight 1/(MN+1 + MN ) and 1/(MN+1 − MN ),
respectively. Thus the case μ ∈ ]M0,M1[ is different from all others. This distinguishes Dirac
from a classical Landau level quantization, for which all cases would have two peaks. Also the
area under the peaks in Im σxy(�) is ∼√

B in analogy to what we found for Re σxx (�).
Next we consider the effect of a finite excitonic gap on the imaginary part of the Hall

conductivity. In this case, even for 	 → 0, � > 0, μ > 0, equation (10) is slightly more
complicated than (34) because of the additional factors 1 ±
2/Mn Mn+1, which are only equal
to unity when 
 = 0. Nevertheless, to understand physically the results given in figure 9
this extra complication is not needed and we can use equation (34) as a guide. What is most
important is to look at the thermal factors. We will consider only the case when the chemical
potential falls between n = 0 and 1 Landau levels in energy. The relevant thermal factor
is nF(M0) − nF(M1). All four curves in figure 9 have μ = 150 K. The long dashed (red)
curve is for 
 = 0 K and is included for reference. It shows a single peak (in −Im σxy(�))
at 294 cm−1 as we know from our previous discussion. For the dash–dotted (black) curve

 = 100 K, which falls below the value of chemical potential (see figure 2(b)). In this case
the thermal factors in equation (34) at T = 0 are unity and the delta functions correspond to

� =
√

2 +�2

1 − 
 and � =
√

2 +�2

1 + 
. Thus, the peak in the long dashed curve
has split into two. Further, such a peak has approximately, but not exactly, the same optical
spectral weight as that under the single peak of the long dashed line. This arises because of the
weighting factors 1 ±
2/Mn Mn+1 of equation (10) not shown explicitly in equation (34). For


 = μ (solid (blue) curve) the two peaks remain at � =
√

2 +�2

1 ±
 (note the small shift
which corresponds to the slightly different values of the gap between the solid and the short–

long dashed curve). However, the thermal factor nF(
)− nF(
+
√

2 +�2

1) now equals 1/2
rather than 1 for the two previous cases, so this feature on its own reduces the optical spectral
weight of these peaks by half. Finally, for the short dashed (green) curve the gap 
 is larger
than is the chemical potential and the thermal factor nF(M0)− nF(M1) is zero, so that no peak
is seen.

In figure 10 we show results for the change in Im σxy(�) in units of e2/h as a function
of μ in kelvin at fixed optical frequency. This figure is the analogue of figure 5. The same
parameters T = 10 K, 	 = 15 K, B = 1 T and 
 = 0 are chosen as well as �, namely, long
dashed (red) curve,� = �2 −�1 = 122 cm−1. The absorptive Hall conductivity for this curve
is near zero until the first Landau level energy 420 K is crossed, where it drops below −17e2/h,
after which it shows a plateau till the next level is crossed at μ = 595 K, where the second
step is seen, etc. The dash–dotted (black) curve is for � = �1 = 294 cm−1. In this case the
first plateau is at ∼−14e2/h till the energy of the n = 1 Landau level is crossed, in which case
it drops to near zero value. The short dashed (green) curve is for � = 0.95�1 = 280 cm−1

and follows the dash–dotted (black) curve, except the plateau is at ∼−10e2/h as we expect.
Finally, the solid (blue) curve is for � = �1 +�2 = 710 cm−1. It starts at zero till μ crosses
420 K, at which point it shows a step down, remains nearly constant and finally steps back to
near zero value at μ = 595 K as expected from consideration of figure 8.

The final figure 11 shows results for the variation of Im σxy(�) in units of e2/h versus the
inverse square root of the magnetic field, 1/

√
B(T ). Here temperature T = 10 K, impurity
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Figure 10. The imaginary part of the Hall conductivity Im σxy (�) in units of e2/h as a function
of chemical potential μ in K. Four frequencies are considered: long dashed, � = �2 − �1 =
122 cm−1; dash–dotted, � = �1 = 294 cm−1; solid, � = �2 + �1 = 710 cm−1; short dashed,
� = 0.95�1 = 280 cm−1. The other parameters are B = 1 T, T = 10 K and 	 = 15 K.

Figure 11. The imaginary part of the Hall conductivity Im σxy (�) in units of e2/h as a function
of the inverse of the square root of the magnetic field, 1/

√
B, with B in T. Three frequencies are

considered: long dashed, 160 cm−1; dash–dotted, 240 cm−1; solid, 400 cm−1. The other parameters
are T = 10 K, 	 = 15 K and μ = 50 K.

scattering rate 	 = 15 K and chemical potential μ = 50 K with excitonic gap 
 = 0. Three
optical frequencies are chosen: long dashed (red) curve, � = 160 cm−1; dash–dotted (black)
curve, � = 240 cm−1; solid (blue) curve, � = 400 cm−1. These curves are similar to those
of figure 6 for the longitudinal case, but here exhibit only a single peak as is expected from the
curves shown in figure 8.
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4. Discussion

In this paper we have extended the calculation of the ac conductivity of graphene presented
in [8] in several ways. One emphasis has been on presenting results for different values
of the chemical potential, μ. In a field-effect device, μ can be varied within the range of
a few thousand kelvin by changing the gate voltage [1–3, 17]. This implies that for fields
of the order of 1 T, μ can be made to sweep over several Landau levels. Recently [18],
infrared spectroscopy has been successfully applied to study FET devices based on poly(3-
hexylthiophene). We find a rich pattern of behaviour for the � dependence of the real
(absorptive) part of the diagonal conductivity, Re σxx (�, T ), as a function of � in a fixed
external magnetic field oriented perpendicular to the graphene sheet. Peaks are seen in
σxx (�, T ) corresponding to the possible transition between Landau levels from the hole to
particle band (interband) or within a given cone (intraband). For μ between the n = 0
and 1 levels there are lines at � = M1, M1 + M2, M2 + M3 (interband) etc, where
Mi is the position in energy of the i th Landau level. There is no peak below M1. The
relative optical spectral weight between the various levels decays approximately as 1/�,
with � evaluated at the centre of each peak. When the chemical potential falls between
the energy of the n = 1 and 2 levels the peak at � = M1 fades into the background
and a new line appears at the lower frequency M2 − M1 (intraband). In addition, the
intensity of the line at M1 + M2 drops to half its value, while all other lines remain
the same. As the chemical potential crosses higher and higher Landau levels, say falls
between MN and MN+1, the low energy peak has shifted to MN+1 − MN (intraband),
after which all peaks previously seen have disappeared into the background except for the
one at MN+1 + MN , which has half its previous intensity. Again, all peaks above this
energy remain unaltered. The peculiar behaviour of the peak at � = M1, which is either
present with full intensity or completely absent, is the hallmark of Dirac as opposed to
Schrödinger behaviour. This peak can be classified either as inter or intra when the excitonic
gap 
 = 0, an ambiguity that is lifted for 
 = 0. For Landau levels based on the
Schrödinger equation the interband lines are evenly spaced while the intraband line is fixed
in energy, and all interband lines first halve their intensity before disappearing entirely as μ is
increased.

We have found that the transition from one configuration of absorption lines to another
occurs for a small change in chemical potential near a given Landau level energy with the scale
for the incremental change inμ set by temperature and/or level broadening 	. Away from these
special values of μ the curves do not change significantly.

In anticipation of experiments [32] we also provide scans of the behaviour of Re σxx (�, T )
at fixed � as a function of chemical potential or of magnetic field. The pattern of behaviour
found is traced back to that just described for Re σxx (�, T ) versus � at different values of
field and chemical potential. Parallel results for the absorptive part of the transverse Hall
conductivity are also presented.

The possibility that an excitonic gap may open in graphene under high magnetic field has
been considered by many authors [19–21, 24] and may even have been observed in recent
experiments [23]. We have considered its effect on the absorption peak seen in both diagonal
and Hall conductivity. Our specific predictions are that a given peak can split into two, can
disappear entirely or can simply shift to higher energy without splitting depending on the value
of the chemical potential. In some circumstances the optical spectral weights under the split
peak can differ from each other by a factor of order three.

Many of the results shown in the figures were obtained on the basis of general formulae
for the conductivity, but it was found that simplified versions which can be more easily used to
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interpret experimental results are surprisingly accurate in the cases considered. They involve
sums over Landau level indices of Lorentzian forms. Recently Li et al [22] and Sadowski et al
[29] used related forms to analyse their results.

Early magnetoreflectance data [33] in magnetic fields in the range 1–10 T carried out in
graphite assigned lines to the H -point and some of these lines were found to follow a square
root of B law as expected for graphene. Recent data of [22] at higher fields up to 20 T, however,
found a conventional linear in B behaviour. Very recent infrared transmission data [29] in
ultrathin epitaxial graphite [30, 31] in fields up to 4 T do show

√
B law and these authors took

this to be evidence that their carbon sheets are sufficiently decoupled to behave like graphene.
However, this interpretation also requires that they assume that various sheets carry different
charges, i.e. have different values of chemical potential. Nevertheless, the main lines seen in
these data were assigned to the first three Dirac interband transitions and the (0, 1) intraband
transition on the basis of their position in energy. They were also seen to vary in optical spectral
weight as the square root of the magnetic field, in good agreement with the findings in this work.
Many other detailed predictions made in this paper have yet to be verified and should help in
firmly establishing the special characteristic of quasiparticles in graphene.

Acknowledgments

We thank D Basov for sharing [22] prior to publication and E J Nicol for discussion. The
work of VPG was supported by the SCOPES project IB7320-110848 of the Swiss NSF and by
Ukranian State Foundation for Fundamental Research. JPC and SGSh were supported by the
Natural Science and Engineering Research Council of Canada (NSERC) and by the Canadian
Institute for Advanced Research (CIAR).

Appendix. Calculation of σ±(�) in magneto-optical Lorentzian model

We consider the complex conductivity σ±(�) = σxx (�) ± iσxy(�). Substituting the
spectral function (3) in equation (2) after evaluating tr and integrating over momentum k (see
appendix A of [8]) one obtains

σ±(�) = e2 Nfv
2
F|eB|

4πc�i

∫ ∞

−∞
dω dω′ nF(ω

′)− nF(ω)

ω − ω′ −�− i0

[
ψ1(ω, ω

′)∓ sgn (eB)ψ2(ω, ω
′)
]
,

(A.1)

where the functions ψ1(ω, ω
′) and ψ2(ω, ω

′) are

ψ1,2(ω, ω
′) =

∞∑
n,m=0

(−1)n+m+1
(
δn,m−1 ± δm,n−1

)
ψn,m(ω, ω

′) (A.2)

with

ψn,m(ω, ω
′) =

(
1 − 
2

Mn Mm

) (
An(ω)Am(ω

′)+ Bn(ω)Bm(ω
′)
)

+
(

1 + 
2

Mn Mm

) (
An(ω)Bm(ω

′)+ Bn(ω)Am(ω
′)
)
, (A.3)

and

An(ω) = 	n

π[(ω − Mn)2 + 	2
n]
, Bn(ω) = 	n

π[(ω + Mn)2 + 	2
n]
. (A.4)
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One can easily check that

ψ1(ω, ω
′) = ψ1(ω

′, ω), ψ2(ω, ω
′) = −ψ2(ω

′, ω). (A.5)

Using this symmetry one can rewrite equation (A.1) in the form

σ±(�) = −e2 Nfv
2
F|eB|

4πc�i

∫ ∞

−∞
dω nF(ω)

×
∫ ∞

−∞
dω′

{[
1

ω − ω′ +�+ i0
+ 1

ω − ω′ −�− i0

]
ψ1(ω, ω

′)

± sgn (eB)

[
1

ω − ω′ +�+ i0
− 1

ω − ω′ −�− i0

]
ψ2(ω, ω

′)

}
. (A.6)

Now using equation (A.2) we obtain

σ±(�) = −e2 Nfv
2
F|eB|

4πc�i

∞∑
n,m=0

(−1)n+m+1
∫ ∞

−∞
dω nF (ω)

∫ ∞

−∞
dω′ ψn,m(ω, ω

′)

×
{[

1

ω − ω′ +�+ i0
+ 1

ω − ω′ −�− i0

] (
δn,m−1 + δm,n−1

)

± sgn (eB)

[
1

ω − ω′ +�+ i0
− 1

ω − ω′ −�− i0

] (
δn,m−1 − δm,n−1

)}
.

(A.7)

For a typical integral over ω′ we have∫ ∞

−∞
dω′ ψn,m(ω, ω

′)
ω − ω′ +�+ i0

=
(

1 − 
2

Mn Mm

)(
An(ω)

ω − Mm +�+ i	m
+ Bn(ω)

ω + Mm +�+ i	m

)

+
(

1 + 
2

Mn Mm

)(
Bn(ω)

ω − Mm +�+ i	m
+ An(ω)

ω + Mm +�+ i	m

)
. (A.8)

If the thermal factor nF is absent, further integration over ω would give an exact result:∫ ∞

−∞
dω dω′ ψn,m(ω, ω

′)
ω − ω′ +�+ i0

=
(

1 − 
2

Mn Mm

)(
1

Mn − Mm +�+ i(	n + 	m)

+ 1

−Mn + Mm +�+ i(	n + 	m)

)
+
(

1 + 
2

Mn Mm

)

×
(

1

−Mn − Mm +�+ i(	n + 	m)
+ 1

Mn + Mm +�+ i(	n + 	m)

)
.

(A.9)

If we integrate with a smooth function nF(ω) we can approximately write∫ ∞

−∞
dω nF (ω)

∫ ∞

−∞
dω′ψn,m(ω, ω

′)
ω − ω′ +�+ i0



(

1 − 
2

Mn Mm

)(
nF (Mn)

Mn − Mm +�+ i(	n + 	m)

+ nF (−Mn)

−Mn + Mm +�+ i(	n + 	m)

)
+
(

1 + 
2

Mn Mm

)

×
(

nF (−Mn)

−Mn − Mm +�+ i(	n + 	m)
+ nF (Mn)

Mn + Mm +�+ i(	n + 	m)

)
.

(A.10)
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Similarly, taking the complex conjugate and changing � → −�, we have∫ ∞

−∞
dω nF (ω)

∫ ∞

−∞
dω′ψn,m(ω, ω

′)
ω − ω′ −�− i0



(

1 − 
2

Mn Mm

)(
nF (Mn)

Mn − Mm −�− i(	n + 	m)

+ nF (−Mn)

−Mn + Mm −�− i(	n + 	m)

)
+
(

1 + 
2

Mn Mm

)

×
(

nF (−Mn)

−Mn − Mm −�− i(	n + 	m)
+ nF (Mn)

Mn + Mm −�− i(	n + 	m)

)
.

(A.11)

Hence we arrive at

σ±(�) = −e2 Nfv
2
F|eB|

4πc�i

∞∑
n=0

{(
1 − 
2

Mn Mn+1

)
[[nF (Mn)− nF (Mn+1)]

+ [nF (−Mn+1)− nF (−Mn)]]
×
[

1

Mn − Mn+1 +�+ i(	n + 	n+1)
+ 1

Mn − Mn+1 −�− i(	n + 	n+1)

]

−
(

1 + 
2

Mn Mn+1

)
[[nF(−Mn+1)− nF(Mn)] + [nF(−Mn)− nF(Mn+1)]]

×
[

1

Mn + Mn+1 −�− i(	n + 	n+1)
+ 1

Mn + Mn+1 +�+ i(	n + 	n+1)

]

± sgn (eB)

[(
1 − 
2

Mn Mn+1

)
[[nF (Mn)− nF (Mn+1)]

− [nF (−Mn+1)− nF (−Mn)]]
×
[

1

Mn − Mn+1 +�+ i(	n + 	n+1)
− 1

Mn − Mn+1 −�− i(	n + 	n+1)

]

+
(

1 + 
2

Mn Mn+1

)
[[nF(−Mn+1)− nF(Mn)] − [nF(−Mn)− nF(Mn+1)]]

×
[

1

Mn + Mn+1 −�− i(	n + 	n+1)

− 1

Mn + Mn+1 +�+ i(	n + 	n+1)

]]}
, (A.12)

where only the sum over n remains.
We verified that Re σxx (�) computed for 	n(ω) = const from the more approximate

equation (A.12) agrees quantitatively with the results obtained from a full equation (7).
This agreement is best for the resonance peaks and only small deviations are seen for
� ∼ 0. Nevertheless, equation (A.12) has a few drawbacks due to approximations made in
equations (A.10) and (A.11).

In particular, the Drude form cannot be recovered in the B → 0 limit, while it can be
obtained [8, 16] from an exact representation (7). Moreover, the imaginary parts of the diagonal
conductivity, Imσxx (�), and the Hall conductivity, Imσxy(�), are divergent in the limit� → 0
and do not satisfy Kramers–Kronig relations with the corresponding real parts found from
equation (A.12). To correct these problems we move the term 1/� under the sum, replacing
it by its value at the pole of the corresponding denominator in equation (A.12), and arrive at
equations (9) and (10).
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